The realization space is [1 x2 1 0 x2 x2^2 x2 x2 0 1 0] [1 -x1 0 1 x1^2 + 2*x1*x2 + x2^2 + x2 -x1^3 - 2*x1^2*x2 - x1*x2^2 - x1*x2 -x1 x1^2 + 2*x1*x2 + x2^2 + x2 0 0 1] [1 -x1 0 0 x2 -x1*x2 0 x1*x2 + x2^2 + x2 1 x1 x2] in the multivariate polynomial ring in 2 variables over ZZ within the vanishing set of the ideal Ideal with 2 generators avoiding the zero loci of the polynomials RingElem[x1 + x2 - 1, x1, x2, x1^2 + 2*x1*x2 + x1 + x2^2 + x2 - 1, x1 + x2 + 1, x1 + x2, x1*x2 + x2^2 - 1, x1^2 + 2*x1*x2 - x1 + x2^2 - 1, x1 + 1, x1^2 + 2*x1*x2 + x2^2 + x2 - 1, x1*x2 + x2^2 + x2 - 1, x2 - 1, x1^2 + 2*x1*x2 + x2^2 + x2, x2 + 1, x1 - 1, x1*x2 + x1 + x2^2 + 2*x2, x1^2 + x1*x2 + x2]